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How do you measure a galaxy’s
velocity?
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Object moving towards us —
“Blueshifted”
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Object moving away from us —
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this galaxy?

Image Credit: ESA/Hubble & NASA
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Distance Measurement Tool #1:
Parallax
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1 *

Angle (arcseconds)
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Distance Measurement Tool #2:
Type Ia Supernovae
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Distance Measurement Tool #2:
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Distance Measurement Tool #3:
Cepheid Variable Stars
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Cosmic Distance Ladder

+ Accurate!

- Can only be
used on stars
inside our
galaxy.
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+ Accurate!

- Can only be
used on stars
inside our
galaxy.

Supernovae
+ Can be used
for large
distances!

- Needs to have
calibrations
from known
distances.

Cosmic Distance Ladder

Cepheids

+ Can be found
in our galaxy
and nearby
galaxies!

- Needs to have
calibrations
from known
distances.
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How does the cosmic microwave
background tell you H,?



https://plancksatellite.org.uk/cmb-sim/ 67.7

Microwave
Background

‘ planck CMB Simulator

Normal Matter (Qp = 0.05)
@&

Dark Matter (O, = 0.275)

@)

Dark Energy (Qp = 0.675)
|

13.8 billion years old - just right
flat universe

Fundamental scale ~0.8°

Universe similarity 100% - the same as our universe
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Cepheid Variable
Stars

Supernovae

Ho

CEPHEIDS

Direct measurement
of H,.

Based on our ability to
calibrate each rung of
the distance ladder.

Many rungs in the
distance ladder, and
small errors can lead
to large errors in H,,.

CMB

Determine
properties of the .
Universe

Ho
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Cosmic
Microwave
Background

Indirect Measurement
of H,.

Based on observations
and our current model
of the Universe.

This is a model, and
models can be wrong
or overly simplistic.



Why is this a “crisis”?
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1. Our understanding of
cosmology is wrong.
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How do we solve this crisis?



CMB with Planck

Balkenhol et al. (2021), Planck 2018+SPT+ACT : 67.49 + 0.53
Pogosuan et al. (2020), eBOSS+Planck Q,H?: 69.6 + 1.8
Aghanim et al. (2020), Planck 2018: 67.27 + 0.60

Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 + 0.54
Ade et al. (2016), Planck 2015, Hy = 67.27 + 0.66

CMB without Planck

Dutcher et al. (2021), SPT: 68.8+ 1.5

Aiola et al. (2020), ACT: 67.9+1.5

Aiola et al. (2020), WMAP9 +A 7.6+1.1

Zhang, Huang (2019), WMAP9+BAO: 68. 36’§?§
Hinshaw et al. (2013), WMAP9: 7|

| [ ]
‘ ; I D'Amico et al. (2020), BOSS DR12+BBN: 68.5 + 2.2
Colas et al, (2020), BOSS DR12+BBN: 68.7=1.5

Philcox et al. (2020), P,+BAO+BBN: 68,6 +1.1
Ivanov et al. (2020), BOSS+BBN: 67,9+ 1.1
Alam et al. (2020), BOSS+eBOSS+BBN: 67.35 + 0.97

Pi(k) + CMB lensing

o o
C r 1 S 1 S Philcox et al. (2020), P(k)+CMB lensing: 70.6*34 Indirect
([ Cepheids — SNIa

Riess et al. (2020), R20: 73.2x1.3

Breuval et al. (2020): 72.8 £ 2.7

Riess et al. (2019), R19: 74.0+ 1.4

Camarena, Marra (2019): 75.4 =

Bumns et al. (2018): 73.2

Dhawan, Jha, Leibundgut (2017), NIR: 72.
Follin, Knox (2017): 73.
Feeney, Mortlock, Dalmasso (2017): 73.
Riess et al. (2016), R16: 73.
Cardona, Kunz, Pettorino (2016), HPs: 73.
Freedman et al. (2012): 74.

TRGB -S
Soltis, Casertano, Riess (2020): 72.
Freedman et al. (2020): 69.
Reid, Pesce, Riess (2019), SHOES: 71.
Freedman et al. (2019)

Yuan et al. (201
Jang, Lee (2017): 7.

Miras — SN
Huang et al. (2019): 73.3+4.0
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Pesce et al. (2020): 73.9+ 3.0

Tully = Fisher Relation (TFR)
Kourkchi et al. (2020): 76.0 2.6
Schombert, McGaugh, Lelli (2020): 75.1 +2.8

Surface Brightness Fluctuations
Blakeslee et al. (2021) IR-SBF w/ HST: 73.3+25
Khetan et al. (2020) w/ LMC DEB: 71.1 +4.1

SNl
de Jaeger et al. (2020): 75.8%33

HIl galaxies
Fernandez Arenas et al. (2018): 71.0+ 3.5

Lensing related, mass model — dependent
Denzel el al. (2021): 71. 8‘3%
Birrer et al, (2020), TDCOSMO+SLACS' 7.4131, TDCOSMO: 7452/
Yang, Birrer, Hu (20 ): Ho =73, 65"
Millon et al. (2020), DCOSMO 742 =
Baxter et al. (2020): 73.5 + 5. 3
Qx et al. (2020)

Wong et al. (2019) HOLICOW 2019: 73.
Birrer et al. (2018), HOLICOW 2018: 72, 3
Bonvin et al. (2016), HOLICOW 2016: 71.9%;

Optimistic average

Di Valentino (2021): 72.94 £ 0.75
Itra — conservative, no Ceehelds, no lensin
alentino (2021): 72.7 + 1

GW related

Gayathri et al. (2020), GW190521+GW170817: 73.4:42,

Mukherjee et al. (2020), GW170817+ZTF: 67.613

Mukherjee et al. (2019), GW170817+VLBI: 68.3:3%
Abbott et al. (2017), GW170817: 70.0°}%

Image Credit: Valentino et al. (2021)
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Image Credit: ESA/Hubble & NASA
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this galaxy?

Image Credit: ESA/Hubble & NASA
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Composite Milky Way Globular Cluster CMD
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We can find tip of the

Red Giant Branch
stars in the outskirts of
nearby galaxies.

Image Credit: ESA/Hubble & NASA
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Cosmic Distance Ladder (TRGB)

CMB and Independent Local H; values Distance to the Sun

CMB Parallax
67.4+0.5

Tip of the Red

Relative Probability Density

RGB Cepheid 3
(LMO) A Giant Branch Stars
69.8 + 1.9 73.9 + 1.6
Supernovae
H,

Image Credit: Freedman et al. (2019)
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The Universe is expanding!

The two main methods for measuring the rate of
expansion of the Universe (Hy) are in tension.

The cosmic distance ladder: 73.3 km/s/Mpc.
- Distance to the Sun -> Parallax
- Parallax -> Cepheid Variables
- Cepheid Variables -> Supernovae
- Supernovae -> Hy

Cosmic microwave background: 87.7 km/s/Mpc.
- Determines the amount of matter, dark
matter, dark energy and radiation in the
Universe.
- Uses these quantities to calculate Ho.

I am using stars at the tip of the red giant
branch to recalibrate supernovae for the cosmic
distance ladder.
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