A 'How To' Guide To Simulating The Universe

Dr. Adam Batten

Swinburne University of Technology Public Astronomy Lecture 27-05-2022

SWINBURNE UNIVERSITY OF TECHNOLOGY

EAGLE: Evolution and Assembly of GaLaxies and their Environments

The evolution of intergalactic gas. Colour encodes temperature

z = 19.8 t = 0.2 Gyr L = 25.0 cMpc

The necessary bits required to simulate the Universe

- 0. Gravity
- 1. Cosmic Microwave Background
- 2. Dark Matter
- 3. Atoms
- 4. Stars
- **5. Black Holes**
- 6. Feedback

Image Credit: Ángel R. López-Sánchez (AAO-MQ)

Video Credit: NASA, ESA & HUDF Team (STSci)

Normal Universe

Strong Supermassive Black Holes

No Supermassive Black Holes

Stronger Supernovae

Image Credit: Vogelsberger et al. (2020)

General Relativity: $G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$

 $=\frac{8\pi G}{c^4}$

General Relativity:

 $G_{\mu\nu} + \Lambda g_{\mu\nu}$

General Relativity:

Newtonian Gravity:

$$F = -\frac{Gm_1m_2}{r^2}$$

 $G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}$

Closer

Distance

Further

Where do we start everything?

1. Cosmic Microwave Background

1. Cosmic Microwave Background

2. Dark Matter

@AstroKatie/Planck13

1. Cosmic Microwave Background

Normal matter only

Normal Matter ($\Omega_b = 0.05$)

Dark Matter ($\Omega_c = 0.275$)

Dark Energy ($\Omega_{\Lambda} = 0.675$)

13.8 billion years old - just right flat universe Fundamental scale ~0.8° Universe similarity 100% - the same as our universe

https://plancksatellite.org.uk/cmb-sim/

N-Body Simulations are actually relatively easy!

https://medium.com/swlh/create-your-own-n-body-simulation-with-python-f417234885e9

3. Atoms

3. Atoms (Gas)

Smooth Particle Hydrodynamics

THE EAGLE PROJECT

4. Stars

Gas Evolution

Redshift: 18.978

Stars Evolution

+

Redshift: 18.978

Centre: 52.8056, 52.5858, 50.2844

Centre: 52.8056, 52.5858, 50.2844

Videos Credit: Adam Ussing (Swinburne)

5. Black Holes

Supermassive black holes are added to the centre of a galaxy when it grows to 10 billion solar masses

6. Feedback

Star Formation Feedback

Supermassive Black Hole Feedback

Star Formation Feedback

Supermassive Black Hole Feedback

Supermassive Black Hole Feedback

Active Galactic Nuclei Feedback

Less Stars

More Stars

Less Massive

More Massive

6. Feedback

EAGLE: Evolution and Assembly of GaLaxies and their Environments

The evolution of intergalactic gas. Colour encodes temperature

z = 19.8 t = 0.2 Gyr L = 25.0 cMpc

Dark Energy?

@AstroKatie/Planck13

Comoving Coordinate System

Comoving Coordinate System

Comoving Coordinate System

Comoving Coordinate System

Comoving Coordinate System

What have we learnt from simulations?

Black holes can drive galaxy evolution

Image Credit: NASA

Helping to reveal the location of the missing baryons.

Summary

Twitter: @adamjbatten

We use simulations to test our understanding of the laws of the Universe, and make predictions based on what we already know.

0. Gravity 1. Cosmic Microwave Background 2. Dark Matter 3. Atoms 4. Stars 5. Black Holes 6. Feedback

Slides: https://adambatten.com/talks/

$$\frac{1}{2}g^{\alpha\beta}\partial_{\alpha}\partial_{\mu}g_{\beta\nu} + \frac{1}{2}g^{\alpha\beta}\partial_{\alpha}\partial_{\nu}g_{\mu\beta} - \frac{1}{2}g^{\alpha\beta}\partial_{\alpha}\partial_{\beta}g_{\mu\nu} - \frac{3}{2}g^{\alpha\beta}\partial_{\mu}\partial_{\nu}g_{\alpha\beta}$$

$$-\frac{1}{2}g^{\beta\lambda}g^{\alpha\rho}\partial_{\alpha}g_{\rho\lambda}\partial_{\mu}g_{\beta\nu}-\frac{1}{2}g^{\beta\lambda}g^{\alpha\rho}\partial_{\alpha}g_{\rho\lambda}\partial_{\nu}g_{\mu\beta}$$

$$+\frac{1}{4}g^{\beta\lambda}g^{\alpha\rho}\partial_{\nu}g_{\alpha\lambda}\partial_{\mu}g_{\rho\beta}+\frac{1}{4|g|}g^{\alpha\beta}\partial_{\beta}|g|\partial_{\nu}g_{\mu\alpha}$$

$$-\frac{1}{4|g|}g^{\alpha\beta}\partial_{\beta}|g|\partial_{\alpha}g_{\mu\nu} - \frac{1}{4|g|}g^{\alpha\beta}\partial_{\beta}|g|\partial_{\mu}g_{\alpha\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Dark Matter + Dark Energy

Modified Newtonian Dynamics

